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In this paper, we present the design, implementation, and analysis of DNS over CoAP (DoC), a new proposal
for secure and privacy-friendly name resolution of constrained IoT devices. We implement different design
choices of DoC in RIOT, an open-source operating system for the IoT, evaluate performance measures in a
testbed, compare with DNS over UDP and DNS over DTLS, and validate our protocol design based on empirical
DNS IoT data. Our findings indicate that plain DoC is on par with common DNS solutions for the constrained
IoT but significantly outperforms when additional standard features of CoAP are used such as caching. With
OSCORE, we can save more than 10 kBytes of code memory compared to DTLS, when a CoAP application is
already present, and retain the end-to-end trust chain with intermediate proxies, while leveraging features
such as group communication or encrypted en-route caching. We also discuss a compression scheme for very
restricted links that reduces data by up to 70%.

CCS Concepts: •Networks→Network protocol design;Application layer protocols; Security protocols;
Network measurement; • Security and privacy→ Security protocols.

Additional Key Words and Phrases: CoAP, DNS, Internet of Things, OSCORE

ACM Reference Format:
Martine S. Lenders, Christian Amsüss, Cenk Gündogan, Marcin Nawrocki, Thomas C. Schmidt, and Matthias
Wählisch. 2023. Securing Name Resolution in the IoT: DNS over CoAP. Proc. ACM Netw. 1, CoNEXT2, Article 6
(September 2023), 25 pages. https://doi.org/10.1145/3609423

1 INTRODUCTION
The Internet of Things (IoT) deployment extends from simple environmental sensors, industrial
monitoring and control to various consumer-grade products, such as home cameras and Smart-
TVs. Most IoT operations require frequent access to data or (cloud-)services, commonly addressed
by names. Unprotected name resolution from such devices—often in long range undisclosed radio
networks—raises concerns regarding security and privacy, as names may carry contextual semantics
that enable fingerprinting for third-parties. The system-wide implementation of a vulnerable
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Table 1. Comparison of DNS transport features. The contributions of this paper are highlighted in bold.

DNS over

Protocol Feature UDP TCP DTLS TLS QUIC HTTPS CoAP CoAPS OSCORE

Message Segmentation ✘ ✓ ✘ ✓ ✓ ✓ ✓ ✓ ✓

Message Authentication ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Message Encryption ✘ ✘ ✓ ✓ ✓ ✓ ✘ ✓ ✓

Message Format Multiplexing ✘ ✘ ✘ ✘ ✘ ✓ ✓ ✓ ✓

Shares protocol with application ✘ ✘ ✘ ✘ ✘ ✓ ✓ ✓ ✓

Suitability for Constrained IoT ✓ ✘ ✓ ✘ ✘ ✘ ✓ ✓ ✓

Content Secure En-route Caching ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✓

protocol such as DNS over UDP also opens IoT deployments to large-scale botnet creation. Hence,
protecting name resolution in the IoT plays a central role.

IoT devices are often constrained. These things commonly interconnect wirelessly and remain
independent of the power grid—they typically operate on batteries or harvest energy from the
environment. Hardware platforms are kept simple to prolong operation times and reduce unit costs.
Even the most powerful devices according to the common IETF classification [9] show orders of
magnitude less memory than general-purpose hardware platforms (see Table 2a). These devices
still require protected name resolution to find, e.g., cloud services [17, 69], possibly via long-range
radio communication through untrusted gateways, e.g., [16, 39].

Protecting the name resolution of DNS strengthens privacy and security [80]. Common uses
of DNS on top of encrypted transport, though, e.g., DNS over HTTPS (DoH) [29], DNS over
TLS (DoT) [31], or DNS over QUIC (DoQ) [33], conflict with low hardware resources of constrained
class 1 or class 2 devices. DNS over DTLS (DoDTLS) [75] does not provide means for message
segmentation as imposed by the small link layer frame sizes of constrained networks (see Table 2b).

In this paper, we present DNS over CoAP (DoC), a secure and privacy-friendly DNS resolution
protocol for the constrained IoT. The Constrained Application Protocol (CoAP) [74] was standard-
ized by the IETF as a lightweight IoT alternative to HTTP and is widely available. CoAP is based
on UDP but provides transactional message contexts, reliability retransmission functions, and
en-route caching on dedicated forward proxies. Security extensions either use Datagram Trans-
port Layer Security (DTLS) [61] or Content Object Security for Constrained RESTful Environ-
ments (OSCORE) [72]. DoC leverages these security extensions to query the DNS privately, se-
curely, and yet efficiently enough to comply with the low-end IoT.
Challenges: Designing and implementing DNS for the constrained IoT is more challenging than
DoH when embedded into common IETF protocols.
(1) Common DNS answers are large and lead to packet fragmentation, which should be avoided on

lossy IoT links [44].
(2) Recently released CoAP methods offer differing features and tradeoffs.
(3) En-route caching has more importance in CoAP to decouple lossy IoT links from content

delivery [24] and fragmentation avoidance benefits from the cache validation mechanism of
CoAP [74]. This extends the design space beyond the purely client-based DoH caching.

Contributions: A feature comparison of the different DNS transports, which highlights the
achievements of our work, is shown in Table 1. The main contributions of this paper are as follows.
(1) We analyze the impact of IoT naming on the design of DNS resolution based on an empirical

data set of characteristic IoT domain names. We compare with name requests observed at a
large regional Internet eXchange Point (IXP). (Section 3)
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Table 2. Constraints of DoC target platforms.

(a) Memory constraints [9]

Memory Class 0 Class 1 Class 2

RAM [kBytes] ≪ 10 ≈ 10 ≈ 50
ROM [kBytes] ≪ 100 ≈ 100 ≈ 250

(b) Network constraints [20, 34, 40, 46, 57]

Characteristic IEEE 802.15.4 BLE LoRaWAN NB-IoT

Data rate [kBit/s] 124–162 125–2000 0.3–5 30–60
Frame size [bytes] 127 ≥ 1280 59–250 1600

(2) We design the DNS over CoAP (DoC), which efficiently embeds the DNS semantics into the
rich feature set of the CoAP protocol suite to enable end-to-end protection, block-wise transfer,
group communication, caching, as well as an option for compression. (Section 4)

(3) A system-level analysis conducted on real IoT hardware using key properties gathered in
Section 3 reveals that DoC performance is at least on par with generic UDP-based DNS transport.
Additional features increase the DoC performance further. (Sections 5 and 6)

(4) We discuss the utility of a potential new media type to transport DNS messages over DoC or
DoH. (Section 7)

The remainder of this paper is structured as follows. After exploring the problem space and the
related work in Section 2, we present our contributions in Sections 3 to 6, discuss further potential
for DoC in Section 7, and conclude with an outlook in Section 8.

2 THE PROBLEM OF NAME RESOLUTION IN THE IOT AND RELATEDWORK
2.1 The Need for Secure Name Resolution
DNS resolvers on IoT devices. The DNS serves as an indirection to reach IP endpoints, enabled
by a DNS (stub) resolver at Internet nodes. Omitting the resolver on the IoT device would introduce
several drawbacks. First, IP addresses to access Internet services, e.g., cloud backends, need to be
preconfigured on the IoT device. This reduces flexibility and adds additional burden, if preconfigured
addresses need changing. Second, offloading the name resolution to more powerful border routers (or
gateways) would require application-specific deep packet inspection on the gateway or an additional
name resolution protocol between gateway and IoT device. We argue that a gateway should remain
as transparent as possible and that DNS resolution should be interoperable throughout the global
Internet. Finally, we emphasize that unprotected DNS over UDP is already available in popular IoT
operating systems, such as ARM Mbed [50], RIOT [15], and Zephyr [60].
Threats to end user privacy. Meta-data about communication can leak sensitive information such
as sleeping habits [6]. One such meta-data are the hostnames IoT devices resolve [58, 62, 68]: Names
provide application- or service-specific information. Plain DNS queries concurrent to (protected)
application traffic may disclose the context of confidential communication, reveal behavioral
patterns, or uncover hints for fingerprinting victims [47]. In this paper, we close the gap in privacy-
friendly DNS resolution [48] by designing and analyzing a lightweight protocol that makes use of
emerging IoT standards to obfuscate DNS queries and responses.
Threats to infrastructure security. Leaked information, may it be personal or not, is a security
risk by itself. An attacker can infer knowledge about the network or applications from it and
plan attacks accordingly. The IoT, however, repeatedly takes center stage in large-scale distributed
Denial of Service (DDoS) attacks against the Internet infrastructure. As an example, the Mirai
botnet caused 600 GBytes/s of incoming traffic, taking down commercial servers in 2016 [5, 27].

DNS rebinding attacks are ways to redirect a requester to malicious sites, which then can deploy
malware on a device [17, 41, 67, 78]. Securing the name resolution with encryption helps mitigate
such attacks and provides another factor of name authentication directly on the end device [28].
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2.2 Challenges from the Constrained IoT
The use of DNS over TCP [18] mitigates DNS-based DDoS attacks, but has limited support by many
resolvers [49]. TCP and its TLS extension introduce an increased transport complexity. Even though
TCP can be deployed in some constrained scenarios [38], it is not suitable for very restricted link-
layer technologies that exhibit small packet sizes and long duty-cycles, such as LoRaWAN [22].
DoT [31], DoH [29], and most recently DoQ [33] are mechanisms to protect the confidentiality and
integrity of DNS traffic on the Internet. They employ transport layer security and maintain session
state between two endpoints, which prevents IP spoofing. The first two approaches build on TCP
and their performance significantly drops when network conditions degrade [30]. This property
conflicts with constrained networks where links commonly saturate. DoQ uses UDP, but despite its
performance advantages over DoT and DoH [37], deployment in low-power regimes is challenging
due to its use of TLS [63].

DoDTLS [61] is an alternative that also runs on datagram transport. In addition to reduced
protocol complexity compared to the former approaches, this transport does not suffer from head-
of-line blocking, which frequently occurs in constrained networks. Nevertheless, DoDTLS faces
issues with larger messages exceeding the Path Maximum Transmission Unit (PMTU) [61] and
forces applications into fragmentation. Moreover, IoT link layers, such as IEEE 802.15.4, LoRaWAN,
or DSME-LoRa, often support only a few hundred bytes [2, 34, 45]. These limits (see 2b) are
easily reached by rather small DNS queries or responses as we will show later. Even though
adaption layers for IPv6, such as 6LoWPAN [56] or Static Context Header Compression and
Fragmentation (SCHC) [21], offer fragmentation between the link and network layer, they introduce
higher packet loss and latency [44].

Despite the advantages of DoDTLS, there are certain drawbacks with protecting the transport in
the IoT use case [25]. (i) IoT networks may connect to gateways that bridge between transports,
e.g., between UDP and TCP. This burdens the end-to-end protection, since gateways need to be
included in trust relationships to re-encrypt the data between endpoints. (ii) A loose coupling and
caching are favored techniques in the IoT to deal with mobility and network partitioning [24],
but the established security sessions are deeply rooted on the transport and harden the endpoint
paradigm. (iii) Long duty-cycles in lossy, constrained networks as in LoRaWAN conflict with the
handshake requirements of DTLS.

While current standardization efforts for DTLS, e.g., Connection Identifiers [65], help to address
the drawbacks, there is another undertaking in the IETF CoRE working group to provide secure
communication. OSCORE [72] protects messages with encryption on the object-level instead of the
transport-level. It fully integrates with the CoAP [74] ecosystem, ensures end-to-end protection
across gateways, allows for a protected multiparty communication, and makes encrypted and
authenticated CoAP messages cacheable on untrusted proxies. In addition, OSCORE provides better
performance compared to CoAP over DTLS [26].

CoAP was designed as the HTTP for the IoT, and thus is the candidate for protective measures
analog to DoH. The CoAP ecosystem facilitates power-efficient, privacy-friendly DNS queries in the
IoT and mitigates the size of DDoS attacks through bandwidth reduction and peer authentication.

3 EMPIRICAL VIEW ON IOT DNS TRAFFIC
In this section, we motivate our design decisions. To this end, we empirically analyze DNS traffic
produced by end-consumer IoT devices and compare to flow samples from a large regional Euro-
pean IXP.
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Table 3. Statistical key properties of domain names queried by IoT devices compared to domain names visible
at an IXP. 𝜇 denotes the mean, 𝜎 the standard deviation, 𝑄1 the first quartile, 𝑄2 the second quartile (or
median), and 𝑄3 the third quartile.

Lengths of domain names [chars]

Data source Unique names [#] min max mode 𝜇 𝜎 𝑄1 𝑄2 𝑄3

YourThings [3] 1293 2 83 31 24.5 9.7 18 24 30
IoTFinder [58] 1097 7 82 24 26.8 10.5 20 24 30
MonIoTr [62] 695 9 83 18 27.1 14.7 18 23 30

IoT total 2336 2 83 24 25.9 11.3 19 24 30

IXP — 0 68 17 26.1 11.7 17 25 33
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(b) Internet devices

Fig. 1. Distribution of name lengths; names queried by different devices connected via the Internet.

3.1 Data Corpus
Identifying IoT-specific traffic is challenging. We rely on data from three common projects, Your-
Things [3], IoTFinder [58], and MonIoTr [62], all collected throughout 2019, which captured and
annotated IoT traffic based on ground truth. YourThings and IoTFinder also provide traffic from
desktop computers, phones, tablets, gaming consoles, and Wi-Fi access points. We exclude such
traffic. All three IoT data sets include both unicast DNS and multicast DNS (mDNS) [14] traffic. As
mDNS is integral to DNS Service Discovery (DNS-SD), which is used in many use cases for IoT device
discovery, we keep mDNS traffic. Overall, the aggregation of all three data sources include data from
over 90 consumer-grade IoT devices by more than 50 manufacturers and contains 0.2 million DNS
and mDNS queries and 1.3 million corresponding responses in total for a total of 2336 unique names.
The IoTFinder data only contains responses but we can infer the queries from their question section.

To compare IoT-specific DNS traffic with DNS traffic from common Internet devices, we leverage
sFlow [59] samples collected in January 2022 at a European IXP. Our IXP data contains 1.6 million
unicast DNS queries and 2.4 million responses and is based on a sampling rate of 1/16000 packets.
Packets are truncated to 128 bytes. For privacy regulation compliance, we strip all names and replace
them with the target analysis data (e.g., name lengths) before exporting them for our analysis. As
such, we were not able to count the total number of unique names. Before stripping, we confirmed
that no side effects on the name lengths were introduced due to query name minimization [12].

3.2 Results
How long are names requested by IoT devices? Figure 1 shows a normalized histogram over
all queried names seen, for both the IoT data sets (Figure 1a) and the IXP data set (Figure 1b). The
statistical key properties for the name lengths of each data set and the aggregated IoT data set are
shown in Table 3.

The median of the name lengths is 23 or 24 characters, depending on the IoT data set, which is
similar to the median of 25 characters in the IXP data set (see 𝑄2 in Table 3). Many cloud and CDN
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Table 4. Queried record types in IN class.

Record type

Data set A AAAA ANY HTTPS NS PTR SRV TXT Other

IoT w/ mDNS 53.6% 16.4% 8.2% — — 19.6% 1.0% 1.2% <0.1%
IoT w/o mDNS 75.8% 23.5% — — — 0.3% — 0.1% 0.3%
IXP 64.5% 17.6% 1.7% 9.1% 0.7% 1.8% 0.4% 0.7% 3.5%

names, such as e123.abcd.akamaiedge.net (name modified for sake of privacy), gather around
this name length. Significantly longer names are used for certain mDNS applications, e.g., for
reverse DNS or to identify local devices via a UUID. As such, we do not see these longer name
lengths at the IXP.

Combining all IoT data sets (IoT total), we find a median of 24 characters for the domain names,
which results into 18.8% of 127 bytes of the IEEE 802.15.4 link layer PDU. Considering the mean of
25.9 characters, even more space of the link layer PDU is occupied by the name itself. LoRaWAN
reduces the PDU to only 59 bytes. In this case, the name would require 40.7% of the available space.
What kind of records are requested? Table 4 presents the relative ratio of the queried record
types available in the IN class based on our data sets. A records are in all data sets the most requested
records, with AAAA records being close second. With growing deployment of IPv6, these numbers
will change in favor of more AAAA queries. When not accounting for mDNS, these are >99% of all
records in the IoT. With mDNS we also see more records associated with service discovery, namely
ANY, PTR, SRV, and TXT records [13, 14].

We mostly see A and AAAA records at the IXP, in addition to several rarely requested resource
records (3.5% in total), The largest remaining part are PTR and HTTPS [71] records.
Other DNS data of interest. We also analyzed the number of entries in each DNS section and the
overall response lengths. In response sections, we find events that include more than 255 entries—
the overflow point of the count fields into 2-byte numbers—but the percentage is low and mostly
relate to mDNS. These large numbers originate from unrequested NS records that advertise name
servers in the authority section and the associated A or AAAA records for these advertised name
servers in the additional section. Providing these optional data seems to be common practice by
cloud and CDN providers. The question section, on the other hand, always contains only 1 entry.
This complies with common resolver behavior to ignore queries or cause an error when they include
a question section with more than 1 entry [55].

Responses can become very long, containing 400 to 600 bytes, in certain cases even more than
1 kByte, even for the IoT devices. This is caused by the long authority and additional sections as
described above.
Lessons learned. Our analysis revealed that long names with a median of 24 characters are
common, even in IoT scenarios. Without a dedicated DNS message compression this can lead to
fragmentation in constrained IoT scenarios. While not part of the main design of DoC, the Content-
Format option of CoAP offers the opportunity to compress the message format, which will lead to
much smaller message sizes than the DNS wire format can provide.

IoT devices mainly query A and AAAA resource records, except when they use DNS-SD. Service
discovery implemented in DNS-SD often involves other resource records. Group OSCORE [77] may
offer an encrypted but lightweight solution for multicast DNS-SD.

In constrained IoT use cases, the authority and additional sections must only be provided if
necessary. Unsolicited NS records serve little purpose in a constrained environment and should be
omitted.
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Fig. 2. Typical deployment of the DNS over CoAP (DoC) architecture. DoC protects name resolution between
the clients running on IoT devices and the recursive DNS resolver.

4 DESIGN OF DNS OVER COAP (DOC)
In this section, we define DNS over CoAP (DoC), a protocol to query the Domain Name System (DNS)
and retrieve responses over the Constrained Application Protocol (CoAP) [74] (see Figure 2).
This protocol work is also in the standardization process of the IETF [42]. The goal is to ensure
message integrity and confidentiality by mapping each DNS query-response pair to a CoAP message
exchange, secured on the transport via DTLS [64] or on the object level via OSCORE [72]. DoC itself
forms a thin layer between CoAP and DNS, comparable to DoH [29] which maps DNS message
pairs into HTTP message pairs.

Using CoAP for DNS resolution provides the following advantages for the constrained IoT:
(i) CoAP runs on UDP, which does not introduce additional connection setup nor state. CoAP
provides optional reliability using a simple mechanism of acknowledgments and retransmissions.
(ii) Proxy operations and en-route response caches decouple packet loss from content delivery,
which strengthens wireless networking [24]. (iii) The Content-Format option of CoAP provides
potential for future, compressed DNS messages to reduce fragmentation on the link layer. (iv) CoAP
provides block-wise transfer to fragment and reassemble large messages on the application layer
(see appendix A), which are likely in DNS as seen in Section 3.

4.1 Protocol Overview
The DoC message exchange requires a mapping of DNS queries to CoAP requests and of DNS
responses to CoAP replies.
Request mapping. A DoC client can send a DNS query over CoAP by embedding the DNS wire
format of a DNS query into a CoAP message using either GET, POST, or FETCH [79] requests, each
of them provide different features.

GET and POST methods are already supported by DoH and their behavior could be translated to
DoC: Using GET, the DNS query requires encoding within the request URI. As such, a DoC resource
needs to be configured as a URI template [23], describing the position of the DNS query in the URI
as a variable. GET allows for caching of subsequent responses but prevents block-wise transfer and
demands a URI template processor for resolving the DNS query variable at the constrained client
side. POST, on the other hand, carries the DNS query in the CoAP body, reducing the complexity
of an additional URI template processor. As a drawback, though, it does not allow for caching since
the payload of the request is not taken into account for a cache key. To allow for both caching and
block-wise transfer, a DoC client can use FETCH [79]. FETCH is currently not supported by all
CoAP implementations, but extending them is trivial. As such, compared to DoH, where GET and
POST are used primarily, FETCH is the preferred method for DoC. Table 5 displays the different
benefits and drawbacks of the three CoAP methods.
Response mapping. A DoC server sends a DNS response over CoAP by encoding the wire format
of the DNS response in the payload of a CoAP response.

Proc. ACM Netw., Vol. 1, No. CoNEXT2, Article 6. Publication date: September 2023.



6:8 Lenders et al.

Table 5. Comparison of request methods considered for DoC.

Feature GET POST FETCH

Cacheable ✓ ✘ ✓

Application data carried in body ✘ ✓ ✓

Block-wise transferable query ✘ ✓ ✓

4.2 Response Caching
Caching of CoAP responses can bolster packet loss in lossy, constrained networks, but must meet
three challenges for an efficient utilization: (i) Consistency of the CoAP cache key equivalent DNS
queries. This key is used to determine the existence of cached response copies. (ii) Alignment of the
CoAP response caching time with DNS record times to live (TTLs) such that a DoC client does not
receive outdated content nor triggers requests too early. (iii) Leveraging of CoAP cache validation
to reduce the number of large DNS response transmissions on cache timeout.
Consistent cache keys. When using CoAP FETCH or GET, the original DNS message becomes
part of the cache key, either because the key includes the payload (FETCH) or the URI (GET).
Since all DNS messages carry an ID in its header, which may differ for multiple queries of the
same resource record or hostname, we propose to set this ID to 0 for either encrypted CoAP mode.
This yields a deterministic wire format without introducing additional state at the client side or
coordinating this ID between multiple DoC clients. DTLS and OSCORE provide sufficient defense
against spoofing attacks for predictable DNS IDs.
Aligning expiration timers. TTLs in DNS responses describe how long a resource record should
stay in a DNS cache. TTLs are actively updated by DNS caches to reflect the remaining cache
lifetime. When embedded in CoAP messages, however, TTLs are opaque since DNS responses are
treated like any other CoAP payload. DoC clients or proxies thus face two cases that impact the
protocol efficiency when cached responses are retrieved. (i) DNS TTLs are expired, although CoAP
caches consider them as valid. This leads to outdated name resolutions at DoC clients. (ii) Cached
CoAP responses are expired, while the DNS TTLs are still valid. This leads to a reduced cache
utilization and unnecessary network overhead.
Leveraging cache validation. A CoAP server may include an entity-tag (ETag) in a response to
differentiate between response representations. Then, client or proxy caches use ETags to query for
the validity of timed out cache entries. If a cached object is still valid, the server transmits a small
confirmation message using the 2.03 response code to reduce the network load. Whenever the
payload of the entry, i.e., the ETag changed, the server transmits the full response. For our evaluation,
we consider two approaches to align the DNS record lifetimes with the CoAP response caching and
validation model: (1) DoH-like, which is based on the caching recommendations for DoH [29] as
baseline and (2) EOL TTLs, our improvement. EOL TTLs leverages CoAP cache validation by setting
all TTLs to 0, i.e., their End of Live (EOL).
Option 1: DoH-like. This approach strictly follows RFC 8484 [29]. An example is illustrated in

Figure 3. A DoC server sets the Max-Age option of CoAP to the minimum TTL of encapsulated DNS
resource records. The Max-Age value decreases on intermediate CoAP caches. DoC clients that
receive a cached response use the altered Max-Age to reduce TTLs of included resource records
(e.g., 2 and 4 in Figure 3). A drawback of this approach is that changing DNS TTLs, either due to
DNS caches or DNS operators, changes the CoAP payload and thereby affects the ETag generation
(see 3 ). This results in failing cache re-validations and requires a full DNS response, even though
only the TTL changed (see 4 ). In common DoH deployments such overhead is of not much concern
but it reduces performance in the IoT significantly (see Section 6 for details).
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Fig. 3. A name resolution using the DoH-like caching scheme in DoC. DoC clients C1 and C2 query AAAA
records for example.org from a DoC server S via a DoC-agnostic CoAP proxy P 1 2 . Only when a DNS
cache miss at S occurs, the DNS name server NS is queried 3 . A cache hit at P for a query from C2 adapts
the TTL, causing cache re-validation to fail and to resend all information 4 . Only C1 can leverage cache
validation immediately just after the Max-Age (MA) update 5 .

Option 2: EOL TTLs. Steps 3 and 4 in Figure 3 illustrate the problem of the DoH-like approach.
Due to changing TTL values in the DNS cache infrastructure, the cache validation model of CoAP
can fail. EOL TTLs improves this situation for increasing success rates of cache re-validations. In
detail, we propose that a DoC server sets the Max-Age CoAP option to the minimum TTL of the
resource records in the DNS response and rewrites all DNS TTLs to 0.

These modifications always ensure identical ETag values for the same resource record set. During
name resolution, such responses may be stored at intermediary caches, e.g., on a proxy or on a
client. For later requests that result in cache hits, Max-Age values are adjusted according to the
CoAP freshness model. When a DoC client receives a response, it copies the CoAP Max-Age into
the DNS resource records to restore the correctly decremented TTL values before placing them in
the local DNS system cache. Requests that hit stale cache entries trigger a cache re-validation. If
only TTLs changed, then the DoC server validates the cache entries, and encodes the new TTL in
the Max-Age option, leveraging the cache validation already in step 4 of Figure 3, which DoH-like
was only able to obtain in step 5 .

4.3 Security Modes
The use of CoAP as transport for DNS enables two security modes to encrypt name resolutions: (i)
Transport layer security (see Figure 4a) or (ii) content object security (see Figure 4b). Both modes
can also be used in combination.
Transport Layer Security. CoAP over DTLS (CoAPS) [64] exhibits similar protocol behavior
and security guarantees (i.e., confidentiality and integrity) as TLS [63], and further contributes a
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Fig. 4. The security modes available with CoAP.

modified record layer that tolerates message reordering and packet loss. One key advantage of
this mode compared to DoDTLS without CoAP is the block-wise transfer to fragment large DNS
queries and responses into smaller CoAP messages. This resolves a major limitation of DoDTLS:
The datagram-based DTLS cannot deal with packets that exceed the PMTU but relies on negotiating
a maximum response size during name resolution [61].

DTLS has two drawbacks impairing DoC: First, without cross-layering, each CoAP retransmission
needs to be re-encrypted and re-authenticated before delivery—retransmissions of the encrypted
datagram may be rejected by the duplicate detection of the peer. Second, CoAP proxies and
intermediary caches must be included in the trust relationship to process CoAP messages.
Content Object Security. OSCORE [72] is a CoAP protocol extension that addresses the drawbacks
of DTLS. Instead of securing transport sessions between endpoint pairs, it provides integrity,
authenticity, and confidentiality on an object level by protecting entire CoAP messages. OSCORE
transforms the original CoAP message into an authenticated and encrypted CBOR Object Signing
and Encryption (COSE) [70] object, and encapsulates it as a CoAP option in an outer, newly created
CoAP header, which only exposes the request-response mapping token, message-layer ID and the
unprotected parts of the OSCORE option.

To mitigate mismatch and replay attacks, OSCORE constructs a strong message binding between
requests and corresponding responses with the use of identical identifiers in their authenticated
components. These persist over retransmissions. OSCORE also reduces computational effort for
encryption and authentication compared to CoAP over DTLS, since the protected messages are
stored in the CoAP retransmission buffer.

To enable caching on untrusted nodes, a protocol add-on for OSCORE is currently discussed [4],
thus ensuring end-to-end security via third-party gateways. Likewise, there is a proposal to allow
for protected group requests and responses for one-to-many communication [77].

OSCORE initially relies on pre-shared keys or preconfigured certificates. DTLS provides a built-
in key exchange protocol to establish temporary session keys between two endpoints. This enables
perfect forward secrecy: Leaked keys cannot be used to decrypt past correspondences. A lightweight
authenticated key exchange for OSCORE is under development, though: Ephemeral Diffie-Hellman
over COSE (EDHOC) [73].

5 COMPARISON OF LOW-POWER DNS TRANSPORTS
In this section, we evaluate memory usage, packet sizes, and resolution times of DoC and compare
with DNS over UDP and DNS over DTLS in different communication setups. Our DoC configurations
include the unencrypted use, CoAPS, and OSCORE, using the FETCH, GET, and POST methods.
Last, we provide a numerical comparison with DoQ based on previous work. For sake of brevity
we excluded an evaluation of block-wise transfer and the packet size analysis for GET and POST
here. Both can be found in appendix D.

5.1 Setup
Hardware and software platform. We conduct our experiments in the FIT IoT-LAB testbed [1],
which supports a variety of IoT hardware environments. We choose nodes from the Grenoble site,
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since the physical stretch makes it a good candidate for multi-hop measurements. Our platform
features a Cortex-M3 MCU with 64 kBytes of RAM, 512 kBytes of ROM [76], and an IEEE 802.15.4
radio [52]. The radio is configured to automatically handle link layer retransmissions and acknowl-
edgments.

As the base of our experiments, we use RIOT (2022.07), which includes DNS over UDP. We
provide extensions to support DNS over DTLS and DNS over CoAP. For details about the imple-
mentations, we refer to Appendix B. We stress-test each of the deployments by using asynchronous
protocol features that allow for concurrently pending queries on a device. We modify a few RIOT
configuration parameters to accommodate the number of queries in the air, specifically internal
queue sizes to hold multiple packets.

Since DTLSv1.2 [64] still enjoys a wider deployment at the time of evaluation, we choose that
version in our evaluations over 1.3 [66]. For consistent measurements, we pre-initialize DTLS
sessions and OSCORE replay windows on all endpoints before starting experiments. To prevent side
effects such as lost requests or prolonged timeouts due to session re-initialization, we increase both
the DTLS session timeout and the OSCORE replay window size. This proved useful when measuring
the protocol effects during long experiment runs. To make the 6LoWPAN implementations of RIOT
(clients) and Linux (resolver) more comparable, we deactivate the stateful address compression and
set the traffic class and flow label IPv6 header fields to 0, so they are elided.

In all experiment runs, we measure the actual name resolutions within the IoT network, and
exclude the resolution times to external DNS servers.
Topology description. We construct a topology with two wireless hops as in Figure 2 for two
DNS clients communicating with a DNS recursive resolver via a forwarder and a border router. The
forwarder is either configured as an opaque IPv6 router, or as a CoAP forward proxy with caching
capabilities. The border router node is of the same hardware as the DNS clients and the forwarder.
It further connects to the host machine of the DNS resolver via Ethernet that is encapsulated in a
TCP-tunneled UART connection. The DNS resolver is a simple Python implementation that uses
standard libraries, such as dnspython and aiocoap, and runs on the SSH frontend. The routes in the
wireless domain are constructed using the RPL routing protocol [32].
Protocol settings. We evaluate the following DNS transports (short names in parentheses): (i)
DNS over UDP (UDP), (ii) DNS over DTLS (DTLSv1.2), (iii) DNS over unencrypted CoAP (CoAP),
(iv) DNS over CoAP over DTLS (CoAPSv1.2), and (v) DNS over OSCORE (OSCORE). We assess
CoAP and CoAPSv1.2 with the FETCH, GET, and POST methods, for OSCORE we use only FETCH
since our DNS over OSCORE implementation does not support GET due to its complexity. With
DTLSv1.2 we use the AES-128-CCM-8 cipher suite [51] and with OSCORE the AES-CCM-16-64-128
cipher mode [70], as these are the most comparable options. Both pre-shared key lengths are 9 bytes.
Communication setup. We query A and AAAA records in separate runs for 50 names of length 24
characters each, emulating real world data by choosing the median name length of the empirically
analyzed names in Section 3. The name encodes an identifier to track query-response pairs over the
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different DNS transports, even if the transaction ID is set to 0. The query rate is Poisson-distributed
with 𝜆 = 5 queries/s to generate noticeable load on the medium. The recursive resolver is mocked
up to generate the desired responses. For the CoAP-based transport, the requested DNS resource is
/dns. All runs are repeated 10 times.

5.2 Memory Consumption
We first inspect the memory consumption on our target platform for the DNS requester application
of each transport. For better comparability, we also add the standard gCoAP example of RIOT,
providing both server and client functionality, to account for a CoAP application already present
on the device. Since the asynchronous request contexts consume a disproportionate amount of
RAM compared to the core functions of each protocol, we limit the maximum number of these
contexts to one. As our software platform does not use any dynamic memory allocation, we do not
consider heap allocation. For measuring ROM requirements, we sum up the respective object sizes
in the .text and .data sections of the RIOT image and for the RAM requirements the .data and
.bss sections. See Appendix C for details.

Figure 5 displays the RAM and ROM consumption for the selected protocols including applica-
tions. The encrypted transports add a considerable amount of ROM—about 24 kBytes in the case of
DTLS and about 11 kBytes in the case of OSCORE—and in the case of DTLS also about 1.5 kBytes
of RAM. Notably, the DTLS part of the firmware expects more than double the memory space of
the OSCORE part. This is due to DTLS requiring its own message layer, as well as asymmetric
cryptography, to establish a handshake, which is not present in OSCORE.

GET support adds about 2 kBytes of ROM and 173 bytes of RAM to the overall size. About 1
kByte of this ROM contributes the URI template processor. The remainder relates to the different
message handling required for the GET request, while the Content-Format option is elided.

These numbers show that for unencrypted transport, UDP remains the clear choice when it comes
to memory efficiency. For encrypted DNS communication, DTLS is the most efficient transport
solution, with OSCORE being a close second. If CoAP is already present for the application, OSCORE
is the most efficient encrypted transport.

The comparably young DNS part for DoC has definite potential for optimization. Currently, it
includes parts of the parsing and handling of certain CoAP options and is with around 4 kBytes
significantly larger than the other DNS transport implementations. This header handling should be
moved to the CoAP part of the firmware in the future to remove possible code duplication with
application code.
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5.3 Packet Sizes
We now measure the packet sizes of the DNS messages on all transports by capturing the IEEE
802.15.4 frames using the sniffer_aggregator tool of the FIT IoT-LAB testbed. Figure 6 displays
the packet dissection for each packet type, segmented per communication layer. Both IPv6 and
UDP headers are compressed within the 6LoWPAN header, which we group with the IEEE 802.15.4
MAC header for simplicity. The maximum PDU of IEEE 802.15.4 is marked in each plot by a red
dashed line. 6LoWPAN fragments larger IEEE 802.15.4 frames, producing additional MAC and
6LoWPAN headers for each generated fragment. We represent each additional fragment with its
headers above the red marker line.

We see three distinct sizes of DNS messages in our experiments. DNS queries requesting either
an A or AAAA record from the DNS resolver. These queries are identical in size and only differ in
their query types (A vs. AAAA). Respective responses contain either an A or AAAA record, which vary
in size due to the IP address lengths.

Figure 6 further includes packet sizes of the DTLSv1.2 handshake and the OSCORE replay window
initialization. We observe that DTLS—both with DTLSv1.2 and CoAPSv1.2—is at a disadvantage
as the handshake messages alone already cause multiple fragmented datagrams and multiply the
likelihood for packet loss during the session establishment.

DNS queries are base64-encoded within the GET method. This inflates requests to a size that is
approximately 1.5 times larger than binary FETCH or POST queries. As such, with either CoAP-
based transport a DNS query using GET will be fragmented for the median name length. Likewise,
when AAAA records are requested the response will be fragmented. For CoAPSv1.2, little room is
left for the DNS message itself in either message format before reaching the fragmentation limit.
The same, however, is also true for OSCORE, if the Echo option required for the replay window
initialization is carried in the request. Appendix D adds supplementary dissections for queries
using GET.

Overall, for unencrypted transmission, UDP is the preferred transport for mitigating fragmenta-
tion. For encrypted usage, OSCORE is the preferred method. CoAP packets can multiplex message
formats with the Content-Format option. A new compressed DNS messages format could thus help
to mitigate fragmentation for CoAP-based transports.

5.4 Name Resolution Times
Next, we evaluate the name resolution times for each protocol. For this, we measure the time from
issuing the query by the DNS client until the IP address is parsed in the response.

Figure 7 summarizes the distributions of resolution times for our protocols. We observe that
the different transports form distinct groups in their temporal distributions due to the different
packet sizes and the resulting 6LoWPAN fragmentation. For UDP requesting an A record no packet
is fragmented and names resolve fastest. 85% of the queries resolve in less than 250 ms, all complete
within 20 s. Requesting an AAAA record, though, plain UDP compares to unencrypted CoAP with
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the FETCH or POST method. The query is not fragmented, but the response is. For these transports
and methods, only 65–70% of the names resolve below 250 ms, but 99% of names resolving within
20 s. The last group consists of those transports and methods, for which both queries and responses
fragment. Unencrypted CoAP with GET, as well as DTLSv1.2, CoAPSv1.2, and OSCORE perform all
within approximately 7% from each other, with 42–49% of A records and 37–45% of AAAA records
resolve below 250 ms. All require at most 41–44 s to resolve 99% of names. These long resolution
times are due to the CoAP retransmission algorithm and of no concern when considering typical
IoT duty cycles, such as the ones employed by LoRaWAN or IEEE 802.15.4e.

As resolution time closely relates to packet size and the number of fragments, the same conclu-
sions as in Section 5.3 can be drawn.

5.5 Comparison with DNS over QUIC
DNS over QUIC [33] could be a lightweight alternative to DNS over CoAP because DNS over QUIC
is based on UDP, an IoT-friendly transport. We now compare DNS over QUIC with DNS over CoAPS,
DTLS, and OSCORE. To analyze the code size of implementations, we base our comparison on prior
work about QUIC in the IoT [19]. To analyze message sizes, we conduct a numerical evaluation.
Code size. Our point of reference is Quant [19], a QUIC implementation on top of RIOT. To
account for differences in implementations that are not protocol-specific, we intentionally omit the
UDP layer and the sock part of RIOT, because Quant accesses the networking modules of RIOT
differently than our DNS client implementation. For further details, we refer to Appendix C.

Figure 8 shows the amount of data .text and .data sections of the generated binaries require.
QUIC, including TLS, uses nearly double the ROM as any of the common IoT transports. It is worth
noting that Quant includes only the QUIC client part while our implementations include both
CoAP client and server code. Further optimizations proposed in [19] can only save ≈20 kBytes,
which would require DNS over QUIC to use more ROM compared to DNS over CoAP.
Packet size. QUIC has variable header lengths for two reasons. First, different types of handshakes,
0-RTT, which complete without additional round trips, and 1-RTT, which require an additional
round trip, lead to different header types. Second, header fields (e.g., connection IDs) can be of
variable sizes. To assess packet sizes realistically, we conduct a best and worst case analysis for
both 0-RTT and 1-RTT handshakes.

Figure 9 shows the relative amount of link layer packet sizes DNS over QUIC would require
to resolve a 24 chars name for a single A and AAAA record, compared to the other DNS transports.
In the best case, i.e., 1-RTT handshakes with small headers, DNS over QUIC is comparable to
DNS over CoAP, but in the majority of cases DNS over CoAPS, DTLS, and OSCORE outperform
DNS over QUIC (see Figure 9b). In case of 0-RTT QUIC handshakes, efficiency of DNS over QUIC
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Fig. 10. Link utilization for four AAAA record queries (Poisson-distributed with 𝜆 = 5 queries / s) for different
caching solutions with CoAP FETCH, comparing DoH-like and EOL TTLs caching approaches. The scenarios
highlighted in blue are evaluated in detail in Section 6.3.

decreases even more (Figure 9a). Requesting an IPv6 address in max header scenarios will trigger
fragmentation into 3 fragments to carry the AAAA response over QUIC.
Summary. DNS over QUIC is less suitable for the IoT than DNS over CoAP. The code size is larger
and packet sizes will require very use-case specific tweaking to selected header fields.

6 EVALUATION OF CACHING FOR DOC
In this section, we perform a comparative assessment of caching as introduced in Section 4 using a
multihop network.

6.1 Setup
We base our evaluation on the setup described in Section 5.1, except that clients now query 50 AAAA
records of only eight distinct names to showcase the cache utilization.

We compare our two approaches, DoH-like and EOL TTLs (see Section 4.2) with three levels of
caching: (i) a DNS cache at each client, (ii) a CoAP cache at each client, and (iii) a CoAP cache at
the forwarder, which runs as CoAP forward proxy (see Figure 2). When no cache at the forwarder
and thus no forward proxy, we call these the opaque forwarder scenarios.

To focus on the impact of caching, we only evaluate unencrypted CoAP to reduce the packet
size overhead of encryption and unrelated side effects stemming from that. The DNS resolver
returns four AAAA records for each name query. This causes 6LoWPAN fragmentation with three
fragments for the responses. All four records use the same TTL, uniformly picked between 2 and 8 s
to introduce quick cache renewals.

6.2 Link Utilization
We show the influence of the FETCH method on the links for different caching scenarios in Figure 10.
The bars with 1-hop link distance to the sink represents the link utilization between proxy and
border router, the bars with distance 2 the utilization between each client and the proxy in Figure 2.

Providing a CoAP cache decreases load on all links, and using the EOL TTLs approach instead of
DoH-like further decreases the load. Using DNS caching at the clients gives only little advantages.
CoAP caching leads to 50% less link utilization in any configuration. Depending on which node
(proxy or client) provides the CoAP cache, the upstream link directly benefits from the cache. Due
to the higher amount of messages on the bottleneck link between proxy and border router, the
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caching can unfold its full potential, visible at that link in the EOL TTLs cases in Figure 10b. Here,
≈50 frames less and, depending on the cache configuration, 5–10 kBytes less need to be exchanged.
Small advantages can also be observed at the client-proxy links.

6.3 Transport Retransmissions, Cache Hits
We now quantify the link stress that clients generate due to corrective actions. We track both the
timestamp of each event at which a client initiates a CoAP transmission and the timestamp for cache
hits including re-validations of stale entries at the clients and the proxy. For all events, we calculate
the time offset to the start time of the respective DNS query. We focus on the blue scenarios of
Figure 10, because they are the most interesting, and consider GET and POST in addition to FETCH.

The original requests have a negligible time offset in the range of microseconds, and since
retransmissions follow a random exponential back-off mechanism [74], their time offsets scatter
within specific regions (gray areas in Figure 11).

FETCH in combination with EOL TTLs provides the best performance (see Figure 11). Cache hits
are able to complete requests without requiring more than one retransmission for most of the DNS
queries. POST requests do not utilize response caches, which degrades their performance to the
level of the opaque forwarder.

In the opaque forwarder scenario, we observe about 50% more retransmissions for both GET and
FETCH compared to any of the caching approaches. Using GET, the retransmissions in the third and
fourth iteration even increase by 7% compared to POST and FETCH. This is a result of 6LoWPAN
fragmenting the query (see Section 5.3).

7 DISCUSSION AND OPTIMIZATION POTENTIALS
With the core DoC protocol at hand, impactful opportunities for security and privacy open. In
addition, a series of potential optimizations and protocol enhancements become attainable, which—
along with open questions and limitations—we discuss in the following.
Implications for security and privacy in the IoT. DoC introduces with CoAPS a new and
efficient baseline for privacy and integrity of DNS queries. To this end, our protocol proposal
mainly translates DNS over HTTPS to the constrained IoT. More importantly, the CoAP extension
OSCORE allows for securing the DNS query messages independent of the transport. This approach
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to content object security enables name resolution with secure messages that are cacheable and
can traverse a gateway without requiring a trust relation for transcoding. This implies that IoT
devices can soften their trust relation with gateways in the future.
How to reduce the DNS packet overhead? DNS messages account for the largest parts of the
packets in DoC. Hence, DNS compression schemes beyond the generic methods of 6LoWPAN [56]
or SCHC [54] promise enhanced efficiency as we concluded in Section 5.3.

One obvious improvement arrives when operators prefer shorter host names in constrained IoT
scenarios. Query name minimization [12, 35], as applied by the DNS infrastructure, is not an option,
as it relies on the queried server being the authoritative name server of the remaining name part.
However, superfluous DNS header fields may be compressed. Klauck and Kirsche [36] proposed
compression for mDNS/DNS-SD messages for 6LoWPAN, but their approach focuses on compatibil-
ity with the DNS wire format. DoC offers the opportunity to use different message formats via its
use of a new Content-Format. Specifically, the Concise Binary Object Representation (CBOR) [10]
offers a standardized, structured, and space-efficient encoding.

In addition, CoAP messages carry a transactional context that matches a reply to its request.
Exploiting this, we argue for the following practices to reduce packet overhead. A DoC question
could be encoded as a CBOR array, containing up to three entries: the name (as text string), an
optional record type (as unsigned integer), and an optional record class (as unsigned integer). If
record type and class are elided, DoC implies AAAA and IN, respectively. A DoC response can be
matched to the request. Hence, the encoding could use only one CBOR array, which contains the
DNS answer section. This could be nested for several, separate answer sections. An answer section
includes a TTL, a name, and an optional type specifier using the space-efficient encoding of CBOR.
For an answer with two arrays, DoC additionally identifies the question section (formatted as
specified above).

In our evaluation, we could verify that the wire-format of an AAAA response packet compresses
from 70 bytes (see Figure 6) down to 24 bytes—a reduction by 66%. Further suffix and prefix
compression, as well as referencing redundant values, can be provided with Packed CBOR [8]. The
CBOR working group of the IETF currently discusses such a format [43].
How to protect the integrity of the DNS TTLs? DoC depends on the CoAP Max-Age option to
track elapsed caching time, which a DoC client then uses to decrement DNS TTLs. The integrity of
the Max-Age option, however, cannot be guaranteed, because it is altered on—potentially untrusted—
intermediaries. An adversary with malicious intent, or a faulty proxy behavior may impair TTLs
on the client by using incorrect Max-Age values.

For EOL TTLs, a potential mitigation is to include a second Max-Age value that is protected
by OSCORE. A DoC client compares both Max-Age values, deduces inconsistent modifications,
e.g., larger values than the original TTLs, and discards the response when the consistency check
fails. For the DoH-like caching scheme, responses include the original TTLs, which can be used
to perform consistency checks instead of including an additional Max-Age value. This approach
mitigates the use of outdated DNS records, but still allows for unauthorized reduction of TTLs,
which affects the caching performance.
How to support DNS load balancing and cache re-validation? A naïve ETag generation
calculates a hash over the CoAP message payload to identify a specific DNS response. Common DNS
behavior challenges this. In addition to changing TTLs, DNS resolvers often rearrange resource
records within responses for load balancing reasons. This modifies the binary representation of
DNS messages, and thus their resulting ETag values. One approach to support load balancing
without altering the message is to sort incoming records at the DoC server and randomize records
at the DoC client.
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How to utilize OSCORE group communication in DNS? An advantage of OSCORE over other
encrypted DNS transports, including DoH and DoT, is the support of group communication [77].
This qualifies OSCORE for encrypted DNS-based service discovery utilizing multicast DNS. On
the downside, multicast can be very energy intensive with larger impact especially in constrained
networks. Future work should analyze DNS over Group OSCORE and carefully weigh benefits and
drawbacks.
Are our insights limited to CoAP? No. Our analysis of domain names may guide protocol
engineering for DNS resolution in constrained networking scenarios in general. Some protocols may
introduce additional challenges, though, such as the asynchronous communication model in MQTT.
Why DNS over CoAP at all? CoAP has several advantages compared to DTLS to secure DNS
resolution. First, from the system level, many applications already rely on CoAP. Reusing software
components that are part of the system stack reduces memory requirements (see Section 5). Second,
resolving names on top of an application layer protocol that is not dedicated to name resolution
mitigates common censorship approaches. CoAP obfuscates the embedded service—similar to DNS
over HTTPS running on standard HTTPS TCP/443 instead of TLS running on the DNS-specific well-
known port TCP/853. Third, combined with OSCORE, CoAP yields the potential of both secure and
more resilient communication via encrypted, en-route caching. Third, when considering LPWANs,
OSCORE object security offers the opportunity for further header compression using SCHC [53],
providing additional space for the encrypted DNS message. DTLS security cannot achieve this
because transport security obfuscates those header fields on which compression is based.

Simply mapping CoAP to DoH (e.g., using a CoAP-HTTP proxy) would also introduce drawbacks.
First, a proxy deployment adds extra bytes to CoAP packets. Second, HTTP primitives do not provide
benefits gained from CoAP-specific FETCH (see Section 5) and dedicated EOL TTLs (see Section 6).

8 CONCLUSION AND OUTLOOK
The constrained IoT lacks a protocol for privacy-friendly, secure name resolution like DoH provides
for the broader Internet. We presented DNS over CoAP (DoC), which leverages the rich feature set
of the CoAP protocol suite to provide an energy-efficient and end-to-end protected name resolution
for constrained networks. In a comprehensive analysis, we compared DNS over UDP, CoAP, DTLS,
CoAP over DTLS, and CoAP with OSCORE in experiments based on full-featured implementations.

Our findings revealed that the performance of name resolution is primarily driven by packet
sizes. While CoAP has a space-efficient protocol encoding, the choice of the request method largely
impacts the packet overhead and the additional CoAP features at hand. FETCH was identified as the
preferred method compared to GET and POST, because FETCH allows for block-wise transfer of
queries and for caching of responses. Correspondingly, OSCORE outperformed CoAPS for protecting
DoC as it seamlessly integrates with the semantics of CoAP and its header encoding, which reduces
packet sizes and memory consumption. Integrating DNS TTLs with CoAP message lifetimes favors
the cache validation model of CoAP and reduces bandwidth demands as well as loss rates further.

Future work shall optimize the coding efficiency by defining a comprehensive compression
scheme for DNS messages. This will enfold impact by reducing fragmentation and by increasing
reliability in low-power and lossy regimes. We will also focus on a DoC integration for mDNS
protected by Group OSCORE to enable service discovery.
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A BACKGROUND ON COAP BLOCK-WISE TRANSFER
CoAP POST and FETCH, which carry a DNS query in the body of a request, provide an additional
advantage in case the DNS query message size exceeds an PDU: The body can be split in the applica-
tion layer into multiple CoAP messages with block-wise transfer mode to prevent fragmentation on
the link layer. When using the Block1 [11] option, a receiver assembles the full message on success-
ful reception of all blocks (see Figure 12a). In contrast to queries, the Block2 transfer mode [11] al-
lows a client to request a certain block size in the response, but the server may also decide to transfer
in blocks proactively, without the Block2 option being present in the initial request (see Figure 12b).

B IMPLEMENTATION OF DOC IN RIOT
In this appendix, we introduce our framework to run DNS queries in the constrained IoT, including
implementations of a DoC prototype, DNS over UDP, and DNS over DTLS. We make use of the IoT
operating system RIOT [7].

The network stack of RIOT is visualized in Figure 13 (DNS building blocks in orange). The sock
API of RIOT is agnostic to the underlying network stack, such as GNRC, and allows, among other
transports, access to UDP and DTLS. Its unified access allows for a seamless composability of
network building blocks, eases implementation complexity, and grants a flexible integration of
third-party network stacks [7]. The existing DNS client in RIOT builds on the sock API to interface
with the underlying network stack. Message-related operations to compose DNS queries and parse
DNS responses follow a modular and reusable design. For code simplicity, this client uses the
synchronous version of sock, so it blocks on requests until a response arrives or a timeout occurs.
The gCoAP library provides support for CoAP [74] on top of sock as well. It features all request
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Fig. 13. DNS, DoDTLS, and DoC in RIOT.

methods including GET, POST, PUT, and DELETE, but also FETCH, PATCH, and iPATCH [79].
gCoAP also implements proxying capabilities and supports response caches on both proxies and
clients [25]. Block-wise transfer [11] as well as DTLS support are provided.

For the purposes of evaluating DNS over CoAP (DoC) we extend the stack by the following
functionalities. We extend the DNS over UDP implementation to support asynchronous calls to sock
for non-blocking queries. For better comparability with DoC, we support the retransmission
algorithm of CoAP [74] for DNS over UDP, i.e., 4 retransmissions using an exponential back-
off. We provide a DoDTLS client implementation via sock with blocking and asynchronous
capabilities and supports Pre-shared Keys (PSKs) using AES and Elliptic Curve Cryptography (ECC)
via the TinyDTLS library. We implement a DoC client on top of gCoAP, which can be configured
to use both blocking and asynchronous requests. For OSCORE support, the libOSCORE library is
used. We also provide a lightweight URI template processor, which the DoC client can use to
marshal the packet format of DNS queries into the URI option of CoAP GET requests. Both our
DoDTLS and DoC implementation reuse the generic interface to compose and parse DNS messages
of the DNS over UDP implementation of RIOT.

C DETAILS ABOUT EXPERIMENT SETUP
Section 5.2 We use version 9-2019-q4-major of the GNU ARM Embedded Toolchain, the recom-
mended toolchain for RIOT 2022.07, which includes GCC v9.2.1. Table 6 shows the compile-time
configuration parameters that we changed from default values. RIOT ships a tool to dissect the
memory usage of a RIOT firmware image from module level down to function and variable level.

We group the modules of RIOT according to the following categories. Application contains all the
machine code instructions and state information of the experiment application. DNS contains the
code of each DNS over X implementation, including the shared DNS message parser and composer.
As the GET method in DoC adds a significant amount of memory for URI template processing,
this is separately shown. OSCORE contains the code of libOSCORE including its dependencies.
CoAP contains the code of the gCoAP library and its dependencies, as well as URI parsing. sock
contains the code of the sock API implementation for the GNRC network stack, as well as the sock
implementation for TinyDTLS. This was included to account for the different build sizes when
using DTLS. DTLS contains the code of TinyDTLS including its dependencies. CoAP example app
contains the code of the RIOT CoAP example.
Section 5.5 We compile Quant (and our DNS over CoAP/DTLS/OSCORE implementations)
for RIOT version 2022.07 using the esp-2021r2-patch3 GCC release by espressif. We used the
ESP32 platform because Quant is available on ESP32.
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Table 6. Changed compile-time parameters in RIOT 2022.07. An asterisk (∗) denotes configuration for the
proxy. A plus (+) only applies to the dedicated block-wise runs. All other configurations refer to configurations
of the clients.

Compile-time Parameter in RIOT Value

CONFIG_DNS_CACHE_SIZE 8
CONFIG_DTLS_PEER_MAX 2
CONFIG_GCOAP_DNS_BLOCK_SIZE 8+ / 16+ / 32+ / 64+
CONFIG_GCOAP_PDU_BUF_SIZE 228
CONFIG_GCOAP_REQ_WAITING_MAX 60 / 71∗
CONFIG_GCOAP_RESEND_BUFS_MAX 60 / 71∗
CONFIG_GNRC_IPV6_NIB_NUMOF 8∗
CONFIG_GNRC_PKTBUF_SIZE 3072
CONFIG_NANOCOAP_CACHE_ENTRIES 8 / 50∗
CONFIG_NANOCOAP_CACHE_RESPONSE_SIZE 228
CONFIG_SOCK_DODTLS_RETRIES 4
CONFIG_SOCK_DODTLS_TIMEOUT_MS 2000
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Fig. 14. Maximum link layer packet sizes for each transport when resolving a name with a length of 24
characters for a single record (A and AAAA respectively) for different CoAP methods (F = FETCH, G = GET, P =
POST) and block sizes. “Last” denotes the size of the last block with block-wise transfer.

D ADDITIONAL EVALUATION RESULTS
Additional CoAP packet sizes. In Section 5.3 we evaluated the packet size, but did not go into
detail for the different CoAP message types. In Figure 14 we show the packet sizes with block-wise
transfer or GET and POST requests for DNS over CoAP.

With block-wise transfer, only the payload can be transferred in blocks. As such, using the GET
method, we are unable to send our DNS query in blocks, as it is carried, encoded in base64 within
the CoAP URI-Query option. Consequently, the GET request stays the same in all the block-wise
transfer modes shown in Figure 14. With block-wise transfer, we are able to reduce the overall
packet size enough to drop below the fragmentation line of 6LoWPAN. Compared to fragmentation
in 6LoWPAN, CoAP block-wise transfer provides us with a recovery mechanism, so even if a
message is lost, we can recover from that on a block-level, so we do not have to send the whole
request or response again, in case one single block or fragment gets lost.

For the setup evaluated, a block size of 32 bytes is ideal: 16 bytes makes the blocks smaller and
more numerous than necessary and 64 already leads to 6LoWPAN fragmentation.
Name resolution times with block-wise transfer. To evaluate the name resolution times of
block-wise transfers, we used the same communication setup as described in Section 5 but also
statically set the block size for both requests and responses to 16, 32, and 64 bytes, respectively.
Block size 64 was only used with AAAA records, as only the responses for those exceed 64 bytes
in the CoAP payload (see Figure 14). We plot the temporal distributions for A and AAAA records
with block-wise transfer using FETCH requests for CoAP and CoAPSv1.2 in Figure 15. For easier

Proc. ACM Netw., Vol. 1, No. CoNEXT2, Article 6. Publication date: September 2023.



Securing Name Resolution in the IoT: DNS over CoAP 6:25

0 10 20 30 40 50 60 70 80
Resolution time [s]

0.00

0.25

0.50

0.75

1.00

CD
F

(a) A record

0 10 20 30 40 50 60 70 80
Resolution time [s]

0.00

0.25

0.50

0.75

1.00

CD
F

Block sizes
16 bytes
32 bytes
64 bytes
No blockwise

DNS Transports
CoAP
CoAPSv1.2

(b) AAAA record

Fig. 15. Resolution times for 50 queries using FETCH with block-wise transfer. Block size 64 was only used
with AAAA records, as DNS responses for A record stay below 64 bytes in size.

comparison, we include the distributions of Figure 7, which do not utilize the block-wise transfer,
but we emphasize the increased range of the x-axis. We observe that the performance decreases
with smaller block sizes. With a block size of 16 bytes, only ≈ 90% and 60–70% of name resolutions
complete in total for CoAP and CoAPSv1.2, respectively. This is due to congestion emerging in the
wireless medium, which increases the probability of packet loss for transfers with higher block
counts. To summarize, block-wise transfer can help mitigate the problem of fragmentation, but
leads to a decrease in performance as well, if not properly congestion controlled.

E LIST OF COMMON ACRONYMS
CBOR Concise Binary Object Representation
CoAP Constrained Application Protocol

CoAPS CoAP over DTLS
COSE CBOR Object Signing and Encryption
DoC DNS over CoAP

DoDTLS DNS over DTLS
DoH DNS over HTTPS
DoT DNS over TLS
DoQ DNS over QUIC
DTLS Datagram Transport Layer Security

OSCORE Object Security for Constrained RESTful Environments
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