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Abstract—This paper evaluates two forwarding strategies for
fragmented datagrams in the IoT: hop-wise reassembly and a
minimal approach to direct forwarding of fragments. Direct
fragment forwarding is challenged by the lack of forwarding
information at subsequent fragments in 6LoWPAN and thus re-
quires additional data at nodes. We compare the two approaches
in extensive experiments evaluating reliability, end-to-end latency,
and memory consumption. In contrast to previous work and due
to our real-world testbed setup, we obtained different results
and conclusions. Our findings indicate that direct fragment
forwarding should be deployed with care, since higher packet
transmission rates on the link layer can significantly reduce its
reliability, which in turn can even further reduce end-to-end
latency because of highly increased link layer retransmissions.

Index Terms—Embedded networks, Internet of Things (IoT),
Fragmentation

I. INTRODUCTION

The advent of the Internet of Things (IoT) increased deploy-
ment of resource constrained wireless devices in a rapidly
growing market. Always connected sensors and actuators
advance business models concerning new products, process
innovations, and data. Wireless operators have already started
the wide-area outreach to the embedded edge, which facilitates
operation of IoT gateways in the wild. Foreseeably, 5G
technologies appear on the horizon with the promise of tailored
technologies that can host vertical networks towards their users.
Such vertical networks, or network slices, will allow public or
private bodies and companies to create their own private 5G-
based networks on site. This current trend will foster a strong
increase of heterogeneous devices that join the wider Internet,
but also a significantly widened range of heterogeneous access
networks.

Besides the wireless IoT, other access technologies such as
Power-line Communication (PLC) gather deployment, while
offering a wide range of packet sizes [1]. These different
technologies introduce a wide variety of maximum packet sizes
in the link layer as visualized in Figure 1. On the network
layer, nodes predominantly speak IPv6 [2] with a mandatory
transparent Maximum Transmission Unit (MTU) size of at
least 1280 bytes. Hence, fragmentation is necessary in order
to communicate using these link layer technologies.

Some of these links—e.g. IEEE 802.15.4 [3]—only support
a very limited number of bytes. For efficiency, information
required to forward a packet cannot be encoded in every
fragment but is only present in the first [4]. This is in contrast
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Figure 1. A typical scenario where datagram fragmentation is needed because
of different maximum packet sizes.

to transparent fragmentation such as in the IP protocols. Since
many IoT networks form meshes, however, forwarding of
packets is needed, and there are two concepts for forwarding
fragmented datagrams. First, reassembly is performed at every
hop (hop-wise reassembly), followed by re-fragmentation when
forwarded on another constrained link. This is the simplest
solution, due to the forwarding information only being stored in
the first fragment. Second, individual fragments are forwarded
(fragment forwarding) by recording the forwarding information
required from the first fragment on all participating nodes.
This recorded information then can be used to forward all
subsequent fragments to the next hop [5, Section 2.5.2], [6].

Both approaches—hop-wise reassembly and fragment
forwarding—have advantages and disadvantages. While direct
forwarding can lead to lower latency, it also sends more packets
on average over time, leading to a higher load on the medium.
Hop-wise reassembly on the other hand is part of common
network stacks, which can be a benefit on more constrained
nodes, where program memory is scarce [7].

In this paper, we comparatively assess the performance
and resource consumption of hop-wise reassembly and direct
fragment forwarding over a thin IEEE 802.15.4 MAC layer.
Our findings are ambivalent and reveal two sides of the coin.
Depending on the MAC layer and packet frequency, hop-wise
reassembly may perform much better than the prospective
optimization introduced with fragment forwarding. Conversely,
MAC layers with a slow coordinative function like IEEE
802.15.4e can profit from fragment forwarding. As part of
this work, we also provide an independent implementation
of fragment forwarding, which we showcase to allow deeper
insights into our evaluation results.

The remainder of this paper is structured as follows. In
Section II, the background of 6LoWPAN fragmentation and



forwarding is recapitulated along with related work. Section III
describes our implementation for fragment forwarding, with
which we obtain the results presented in Section IV. We discuss
our findings in Section V, and close with a conclusion and an
outlook in Section VI.

II. PROBLEM STATEMENT AND RELATED WORK

The IETF specified the 6LoWPAN protocol [4] to allow
for transmissions of IPv6 packets over IEEE 802.15.4 [3]
networks—a widely used link layer technology in the IoT.
While IPv6 requires a Maximum Transmission Unit (MTU) of
at least 1280 bytes [2], IEEE 802.15.4 is only able to handle
link layer packets of up to 127 bytes—including the link layer
header—which in the worst case only leaves 33 bytes for
application data [8]. To enable IPv6 communication in such
a restrictive environment, 6LoWPAN provides both header
compression [9], [10] and datagram fragmentation [4]. The
latter is the focus of this paper.

For completeness we note that the concept of 6LoWPAN (or
more generally 6Lo) is not limited to IEEE 802.15.4, but also
can be used in other link-layer technologies such as PLC [1].

A. Basic Fragmentation and Reassembly in 6LoWPAN

In 6LoWPAN, datagram fragmentation implements the
following common approach: Before sending a datagram to
the underlying link layer, the network layer checks whether
the data exceeds the maximum payload length (commonly
referred to as SDU, Service Data Unit) of the link layer. If the
data size complies with the SDU, a single datagram is sent
without any modification. If the data size does not comply
with the SDU, a datagram is divided into multiple fragments
such that the content of each fragment matches the SDU. Each
fragment includes a fragment header containing information
to assemble the datagram [4]:

The fragmentation header of the first fragment contains an
(uncompressed) datagram size in bytes as an 11-bit number
and a 16-bit datagram tag to identify the fragment on the
link. All subsequent fragments carry in addition to the header
fields of the first fragment header an offset to this fragment in
units of 8 bytes, see Figure 2. Consequently, all payloads in a
fragment must be of a length that is a multiple of 8.

The receiver identifies multiple fragments that belong to the
same datagram by comparing three values: (i) the link layer
source and destination addresses, (ii) the datagram size, and
(iii) the datagram tag. Then, the receiver network stack stores
all fragments of an incoming datagram in the reassembly buffer
for up to 10 seconds. These identifying parameters to assign
fragments to a datagram i we will refer to by id(i) in the
following.

A brief back-of-the-envelope calculation shows that a node
needs to allocate at least 1302 bytes of memory per reassem-
bly buffer entry to reassemble a fragmented datagram:
• At most 8 bytes per address, plus 1 byte per address

to store their length as IEEE 802.15.4 supports both 64-
bit EUI-64s and a 16-bit short addresses as addressing
format,
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Figure 2. Fragmentation in 6LoWPAN.

• 2 bytes for the datagram size,
• 2 bytes for the datagram tag, and
• 1280 bytes for the maximum expected size of an IPv6

datagram.
1302 bytes are significant memory requirements on con-

strained devices, which typically offer memory within the range
of several kilobytes [7]. Especially in a multihop network—
a common deployment scenario in the IoT—it becomes
challenging to provide enough resources to store a sufficient
number of reassembly buffer entries. In Section III-A, we show
how to save memory in a concrete implementation.

B. Fragment Forwarding for Low-power Lossy Networks

The destination address in the IPv6 header guides forwarding.
In 6LoWPAN fragmentation, however, the IPv6 header is only
present in the first fragment. To enable intermediate nodes in
a multihop network to forward fragments without this context
information, two solutions are proposed: hop-wise reassembly
and direct fragment forwarding.

The naive approach to handle fragmented datagrams in a
multihop network is hop-wise reassembly (HWR) [2], [4]. In
HWR, each intermediate hop between source and destination
assembles and re-fragments the original datagram completely.
This leads to three drawbacks. First, each intermediate hop
needs to provide enough memory resources to store all
fragments in the reassembly buffer (see Figure 4). Second,
the memory requirements are unbalanced between nodes in
the network. Considering highly connected nodes (see node e
in Figure 3), these nodes need to cope with the reassembly
load of all their downstream nodes. Third, datagram delivery
time is bound by the time needed to receive all fragments
of the datagram. Papadopoulos et al. [11] underscored these
problems in more detail.

Fragment forwarding (FF) [6] tackles the drawbacks of
HWR by leveraging a virtual reassembly buffer (VRB) [12],
see Figure 5. In contrast to a reassembly buffer, a VRB only
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Figure 3. e represents a typical bottleneck for HWR.
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Figure 5. Fragment Forwarding (FF) of a datagram i using the Virtual
Reassembly Buffer (VRB). Notations comply with Figure 4.

stores references to link the subsequent fragments to the first
fragment such that intermediate nodes can determine the next
hop. In detail, the VRB is applied as follows. Each entry
represents the source and destination addresses, the datagram
size, the datagram tag (id(i), cf., Section II-A), the next hop
link layer address hv , and the outgoing datagram tag t(i). This
has two implications. First, an intermediate node can ensure
that datagram tags are unique between a node and its neighbors.
Second, all fragments belonging to the same datagram will
travel the same path.

C. Additional Related Work

Other approaches that use similar concepts as FF mainly
focus on datagram prioritization [13], [14]. In addition to
FF, the 6lo working group of the IETF is also working
on a forwarding mechanism that includes selective fragment
recovery [15]. Selective fragment forwarding is effectively a
complete new fragmentation protocol introducing new header
types for 6LoWPAN. As it allows for recovery of lost fragments
and provides congestion control mechanisms it could help
to mitigate the congestion problems we observed in our

experiments. Exploring its advantages in more detail will be
part of our future work.

Similar to this, Chowdhury et al. [16] proposed a standard
compliant NACK-based approach for selective fragment recov-
ery. Since those NACKs, however, are associated with id(i),
this mechanism only allows for hop-wise recovery and does
not cover the whole end-to-end path when using FF.

The work most closely related [17] to our study uses the
6TiSCH simulator [18] to analyze the performance of FF. The
authors show that FF is a promising option in IEEE 802.15.4e
(TSCH). As part of our experiments, we revisit the results
of these experiments in a real-world setting and find that
the abstraction in the simulation of [17] leads to misleading
conclusions.

Awwad et al. [19] also compared FF to HWR in a simulator
and conducted experiments in a testbed. They used a topology
consisting of 4 nodes in a line. This setup ignores challenging
bottlenecks, which occur in real deployments (see Section II-B).
Furthermore, they only compared their proprietary solution of
fragment forwarding with HWR in the testbed evaluation. In
contrast to this, we evaluate standard compliant protocols in a
complex testbed setup.

In our work, we did not consider the frame delivery mode
for link-layer meshes of 6LoWPAN [4]—commonly known as
mesh-under [5, Section 1.2]—because it is known that such a
solution falls behind HWR [16].

III. IMPLEMENTATION

A thorough experimental evaluation of protocols requires
sound software implementations. For the sake of comparison,
the protocols under investigation should be analyzed on the
same system. Unfortunately, there is no software basis available
which assembles all required components for constrained
devices. In this paper, therefore, we extend RIOT [20], [21], a
common IoT operating system. By selecting an open source
platform and making our software publicly available we enable
reproducible research [22], [23]. Based on our extensions, we
gain detailed insights into system and network performance.



In the remainder of this section, we present design, imple-
mentation, and configuration choices to better understand the
subsequent evaluation.

A. System Details on 6LoWPAN

RIOT provides a stable 6LoWPAN implementation as part
of its default network stack, GNRC [24], [25]. Instead of
statically allocating packet space for each reassembly buffer,
it uses the preconfigurable packet allocation arena of GNRC,
called gnrc_pktbuf, to dynamically allocate packet buffer
space of varying length within it. This allows for high resource
efficiency and flexibility. By storing the major part of the
IPv6 datagram (1280 bytes) only in the packet buffer, the
6LoWPAN stack requires 22 bytes (plus some additional bytes
for management), instead of allocating the complete 1302 bytes
(cf., Section II-A).

To provide low delays and high throughput, the fragmenta-
tion is done asynchronously. For this purpose, the reference
to the datagram that needs to be fragmented is stored in a
fragmentation buffer. The data of the datagram resides in
gnrc_pktbuf. In addition to the datagram, the fragmentation
buffer also contains meta-information needed for fragmentation,
including the original datagram size and its tag.

B. Fragment Forwarding

We extend 6LoWPAN in GNRC to support direct fragment
forwarding.1 One crucial implementation choice relates to the
creation of the first fragment. The first fragment may include
the compression header [9], which may change size during
network traversal as compression contexts such as link-layer
addresses change. Because of that, the compression may be
less or more effective depending on header updates made by
intermediate forwarders. In the worst case, the packet becomes
less compressed, leading to additional fragmentation. To tackle
this problem, we apply a well-known approach by keeping the
first fragment as minimal as possible [12], i.e., the original
sender includes only the fragment and compression headers
and pushes the payload to the subsequent fragment. It is worth
noting that this approach does not increase the overall number
of fragments compared to a naive approach that minimizes
the size of the last fragment. In fact, it will reduce the likely
creation of additional fragments.

We support this mechanism not only on the original sender
but also on intermediate forwarders for the case that the
original sender did not provide enough space for the expanding
compression header, see Figure 6. This is possible, as all
subsequent fragments also contain an offset, which indicates
fragmentation relating to the first fragment. Furthermore, it
simplifies the implementation greatly, which in turn saves ROM.
Since the fragmentation buffer is used for this, its default size
of 1 needs to be increased so that the node is able to handle
multiple datagrams—forwarded datagrams and datagrams sent
by the node itself—at the same time.

To keep the implementation simple, we only forward frag-
ments when the first fragment is received in order, otherwise

1https://github.com/RIOT-OS/RIOT/pull/11068
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Figure 6. Compression header (Cmp) handling for fragment forwarding in
the RIOT GNRC.

we reassemble the packet completely. This can be considered
a fall-back to hop-wise reassembly.

C. MAC Layer

In its default configuration, GNRC only provides a very
slim MAC layer that benefits from radio drivers that support
CSMA/CA, link layer retransmissions, and acknowledgement
handling by default. Special care has to be taken for hardware
platforms that use “blocking wait on send” whenever the
device is in a busy state. When deploying fragment forwarding,
this may cause race conditions within the internal state
machine of the device [26] because of the faster interchange
of simultaneous sending and receiving events. To solve this
problem, we provide a simple mechanism to queue packets
whenever the device signals that it is in a busy state. As soon
as the device becomes available again (and not later than 5 ms),
the MAC layer tries to send the packet from the top of the
queue again.

IV. EVALUATION

Our evaluations are performed in a real-world testbed using
class-2 IoT nodes [7] and real 802.15.4 radio communication.
One important aspect of the experiment design is the underlying
network topology, which we consider by selecting specific
nodes from the testbed. We want to assure that (i) the network
is widespread enough and not too crowded, but also that (ii)
it contains multiple bottlenecks as described in Section II-B
to stress hop-wise reassembly.

Our goal is to carefully explore the behavior of the compet-
ing fragmentation schemes and along this line to reproduce
simulation results of [17]. From many previous experiences we
know that simulation—although an important tool for network
analysis—often produces misleading results in the complex
and surprising world of low-power wireless communication.

A. Setup

Experiment Testbed and Node Selection. We deploy our ex-
periments on the FIT IoT-LAB testbed and use 50 nodes of the
Lille site. These are constrained IoT devices with Cortex-M3
MCUs, 64 kB of RAM, 512 kB of ROM (STM32F103REY),
and IEEE 802.15.4 radios (Atmel AT86RF231). The radio chip



(a) Logical topography. (b) Geographical topography.

Figure 7. Topography of the selected testbed network (dark-blue: sink, light-
blue: source nodes).

provides the basic MAC layer features such as CSMA/CA,
link layer retransmissions, and acknowledgements.

The Lille site features a challenging multihop network.
Nodes are not only distributed in a dedicated room in a grid but
also located in multiple offices spread over different floors. The
site therefore provides a realistic scenario for different types
of heterogeneous deployment. However, a careful selection of
nodes is necessary to control side effects that may negatively
affect our observations.

To select nodes for our experiment, we first measure basic
properties of the testbed. By correlating the geographic distance
and the packet delivery ratio (PDR) between two nodes, we
found that two hops should be in range of 6.6 m or less.
This ensures that the PDR is at least 97.5%, which we argue
is acceptable. Lower PDRs do not contribute to a better
understanding of the problem space in this paper. The network
is then constructed by a breadth-first search over all available
nodes of the testbed site, starting at the sink s.2 To prevent a
bias towards specific nodes, our network construction algorithm
works as follows.

1) Collect all neighbors within the range of 2.2 m and 6.6 m
as potential node candidates in set N . This selection
expands the network as much as possible under our PDR
requirement.

2) Get a randomized, uniformly distributed sample M of 1
to 3 members in N ; s always selects 2 neighbors.

3) Add M to the network, and continue for each member
of M until 49 nodes are found.

The selection of 1 to 3 downstream neighbors per node
assures the inclusion of reassembly bottlenecks into the
network, as described in Section II-B.

After constructing the network, we used the same set of
nodes in all of our experiments to ensure comparability. The
resulting logical and geographical topologies are visualized in
Figure 7. Multiple paths have the same length. The longest
path consists of 6 hops.
Communication Setup. We configured all routes based on
the breadth-first search. Except for the sink and its neighbors,

2We select node 55 as the sink as it is located centrally between the more
crowded nodes in the dedicated room and the more sparse nodes in the office
space at the Lille site. This ensures that a balanced set of both network
deployment scenarios is included.

Table I
FRAGMENTS / UDP PAYLOAD SIZES MAPPING.

Fragments # UDP Payload Mean Reassembly Time

HWR FF

1 16 bytes (no reassembly)
2 80 bytes 4.3 ms 5.8 ms
3 176 bytes 10.8 ms 13.7 ms
4 272 bytes 17.4 ms 19.6 ms
5 368 bytes 23.9 ms 26.2 ms
6 464 bytes 32.4 ms 33.5 ms
7 560 bytes 37.3 ms 39.1 ms
8 656 bytes 45.2 ms 47.5 ms
9 752 bytes 52.4 ms 54.5 ms

10 848 bytes 57.4 ms 60.6 ms
11 944 bytes 64.1 ms 67.1 ms
12 1040 bytes 71.3 ms 73.1 ms
13 1136 bytes 78.7 ms 80.7 ms
14 1232 bytes 85.2 ms 88.0 ms

we configured all other nodes as data senders to ensure the
need for forwarding.

All source nodes start sending UDP packets—using the same
payload—to the sink in a uniformly distributed interval between
5 s and 15 s. The experiment ends after each source has sent
100 packets. In contrast to the reference simulation [17], we
select a smaller interval to allow for a significant number of
runs. Slower sending rates would lead to unfeasible durations
in our real-world experiments. It is worth noting that our
decision is made carefully: We conducted one experiment with
exactly the same run times as described in the related work.
The results are consistent with our experiments that adapt the
improved parameter setting. The same is the case for smaller
network sizes.

HWR and FF implement different fragmentation strategies
(cf., Section III-A). Consequently, the original UDP payload
may lead to differently sized fragments resulting in varying
overheads for the reassembly processes. To allow for the fair
comparison of both approaches, we need to align the baseline
depending on the UDP payload size. Table I shows the best
results based on our empirical validation. We use these payload
sizes in our subsequent experiments.

To evaluate the performance, our experiments measure the
same metrics as the simulation [17]. This includes reliability,
specifically the PDR, and the latency between the UDP
sockets of source and sink. In addition, we also assess system
complexity in terms of memory.

Software Parameterization. RIOT offers a variety of
compile-time configuration parameters to adapt to use cases.
In most of the experiments, we can use default configurations.
For the following reasons, however, we have to change some
default values: (i) The default configurations assume rather
small networks. This conflicts with efficient forwarding in
large-scale mesh networks, such as our testbed. (ii) We want
to compare our results with related work that analyzed some
aspects in simulation [17]. We document the changes of default
values in the Appendix.
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Figure 8. Analysis of the packet buffer utilization.

In contrast to the parameters in [17], the default size of
the virtual reassembly buffer in GNRC is 16 bytes. Since this
only prefers direct forwarding, we do not need to adapt its
size. Furthermore, we have to increase the size of the common
reassembly buffer of the sink. Without this adaptation the
reliability decreases significantly, even for the smallest number
of fragments.

B. Result 1: Memory Consumption

Table II shows both ROM and RAM usage of the 6LoWPAN
layer at the source node for both forwarding approaches. When
compiling the software we use arm-none-eabi-gcc v7.3.1
with -Os optimization (size-optimal) for ARM Cortex-M3 and
the compile-time parameters we line out in Section IV-A. We
use the size tool to extract the relevant module information.
To make memory measurements compatible, we set the
reassembly buffer size to the same value as the VRB size
(16) for HWR. The anticipated memory advantage does indeed
exist, even with the GNRC strategy to not allocate 1280 bytes
IPv6 MTU for every reassembly buffer entry but using the
central packet buffer instead (cf., Section III).

FF adds a small amount of RAM to keep the meta-data
required for refragmentation in the asynchronous GNRC
fragmentation buffer. More ROM is also needed for the possible
refragmentation of the first fragment. The majority of the
≈ 500 bytes of additional ROM for FF in 6LoWPAN is

Table II
MEMORY SIZES [BYTES] FOR SOURCE NODES.

Module HWR FF

ROM RAM ROM RAM

6LoWPAN 5950 6124 6472 4284
VRB n/a n/a 316 768

Forwarding n/a n/a 544 0

Sum 5950 6124 7332 5052

explained by the overhead required to distinguish whether
packets need to be handled by a VRB entry creation or put
into the regular reassembly buffer.

Figure 8 presents our analysis of the actual utilization of the
6144 bytes packet buffer. For FF the packet buffer is used just
a little less than for HWR. This can be seen in Figure 8(a),
which plots the maximum packet buffer utilization during the
runtime of each experiment. The high packet buffer usage for
FF is mostly caused by the fallback to regular reassembly as
we describe in more detail in Section IV-C.

A clear correlation between events where a full reassembly
buffer coincides with a high (or low) maximum usage of the
packet buffer can be seen in Figure 8(b). This plot visualizes
events taken from all nodes during three runs of the experiment.
More saturated hexagons indicate higher multiplicities of events
in this area. The occurrence of many full reassembly buffers
tends to lead to high maximum packet buffers. Those coinciding
events, however, are less likely in general. The observed
clusters are in line with the hop distances from the nodes
on which the coinciding events happen to the sink.

C. Result 2: Reliability and Latency

Figures 9(a) and 9(b) displays our results from measuring
reliability and latency. Strikingly, FF admits poor reliability,
which is in contrast to previous results [17]. Even for a small
number of fragments, FF achieves less than half the PDR
of HWR. Values then quickly approach zero with increasing
number of fragments. HWR, though also performing poorly,
manages to deliver at least some packets to the more distant
nodes.

The latencies we measured for FF are also significantly
higher than in the previous simulation work. HWR is expected
to operate slower because each node needs to reassemble the
entire frame prior to forwarding to the next hop.

To explore the underlying reasons for the poor performance
of FF, we analyse the radio transmission and media occupancy.



1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fragments [#]

0

20

40

60

80

100
A

ve
ra

ge
pa

ck
et

de
liv

er
y

ra
tio

[%
] HWR

FF

(a) Packet delivery ratio.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fragments [#]

0

100

200

300

400

500

600

So
ur

ce
-t

o-
si

nk
la

te
nc

y
[m

s]

HWR
FF

2 hops
3 hops
4 hops
5 hops
6 hops

(b) Source-to-sink latency (socket-to-socket) by hop distance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fragments [#]

0

10
0

10
1

10
2

10
3

Fa
ile

d
tr

an
sm

is
si

on
s

[#
]

HWR
FF

(c) Link layer retransmissions per node. Lines depict average values.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fragments [#]

0

10
0

10
1

10
2

10
3

Fi
lle

d
re

as
se

m
bl

y
bu

ff
er

ev
en

ts
[#

]
HWR
FF
FF (VRB)

(d) Filled reassembly buffer events per node. Lines depict average values.

Figure 9. Measurement results for 100 packets every [5,10] s per node (3 runs).
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Figure 9(c) plots the number of link layer retransmissions
that occurred for each node within the network over three
experiment runs as a scatter plot with a logarithmically scaled
y-axis. The line plot within the scatter plot represents the
means of the respective data set.

In our experiments, we see significantly more link layer
retransmissions per node with FF than with HWR. This
is caused by much faster send and receive triggers on the
device due to immediate fragment forwarding, which increases

collisions and packet loss. Moreover, this results in straining
the single buffer of a device, which far more often needs to
discard unacknowledged incoming packets while it is busy with
either sending or receiving a different packet. This invokes link
layer retransmissions and eventually contributes to packet loss.
An example for these occurrences is illustrated in Figure 10.
We are able to confirm with local measurements on a sister
device of the nodes’ radio (AT86RF233 [27]) that the device
can remain busy for up to 4 ms utilizing a logic analyzer.
With HWR the link is more relaxed due to the time it takes
to reassemble and re-fragment a packet again, which leaves
both the device and the medium non-stressed.

We can also see that packets are lost with FF when the
respective reassembly buffers are full. In Figure 9(d), we plot
these occurrences of reassembly buffer exhausts for each node
over 3 experiment runs analog to Figure 9(c). The reassembly
buffer with FF is only about 23% less often filled than with
HWR. This hints at frequent transmissions that lose the first
fragment and cause the FF implementation to fall back to
normal reassembly, since the first fragment is missing or
is received out of order (cf., Section III-A). Indeed, in 50-
60% of the cases, we observe that the reassembly buffer



expires because the first fragment of a datagram is missing.
These transmission failures fill the reassembly buffer up with
incomplete datagrams, especially when more fragments are lost.
In this scenario a datagram never actually takes the full 10 s
of reassembly timeout to reassemble at each hop (the plain
source-to-sink latency is 600 ms at most). Hence it is unlikely
that different strategies—for instance re-fragmenting partly
reassembled datagrams and forwarding the rest as soon as the
first fragment comes in—would noticeably increase reliability.
Still, this process might save space in the reassembly buffer:
When the first fragment just arrives after a subsequent fragment
the reassembly buffer does not require the full space of the
datagram.

To further verify that reliability problems are not caused
by our implementation, we repeat the experiments with a
modified version of FF. Our modification makes FF simulate
the behavior of HWR by putting the fragments to forward in
a VRB-associated queue instead of sending them. Only after
all fragments belonging to the datagram pass the forwarding
engine, all fragments queued in the VRB are sent. The
performance of FF in those experiments is comparable to
the HWR results we observed in our evaluation above. The
number of link layer retransmissions also goes down to a
comparable level. We consider this a strong indication of a
consistent code base.

V. DISCUSSION

In our testbed experiments, we were not able to reproduce
the results for FF that are based on simulations as presented
in [17]. One striking difference between the two settings is
our faster, lightly coordinated CSMA/CA MAC layer, which is
by no means uncommon. Corresponding problems have been
already hinted at in [6], and are now substantiated.

We did not expect to see such disappointing results as
revealed in this paper. In our given scenario, FF becomes
more of a hindrance than an improvement over HWR, even
though our implementation optionally falls back to HWR in
case of fragment loss. The only advantage of FF we could
clearly identify is its reduced RAM consumption. Evaluating
whether alternative approaches to fragment forwarding such
as Selective Fragment Recovery [15] could help to mitigate
these problems will be part of our future work.

Nonetheless, the stress on the device can only be reduced
by a more elaborate MAC protocol. In such attempts, however,
care needs to be taken with the configuration of the experiment
parameters: Preliminary experiments with an existing MAC
protocol in RIOT [28] led to problems such as frequent packet
buffer overflows, after the packets stayed much longer in the
buffer queues of the MAC layer.

In the end, deployment scenarios and provider use cases
should decide whether fragment forwarding is applicable and
if so on which MAC protocol.

VI. CONCLUSION AND OUTLOOK

In this paper, we evaluated direct fragment forwarding with
6LoWPAN in comparison to hop-wise reassembly using large

real-world experiments. We showed that with a thin MAC layer,
hop-wise reassembly can be the better choice to achieve proper
reliability and latencies. This contradicts previous results,
but becomes clearer after careful analysis reveals that the
medium is quickly exhausted by quicker fragment sending and
retransmissions.

Further experiments are needed not only to evaluate more
complex MAC layers and contrast with the results in [17], but
also to empirically relate FF to other fragment forwarding tech-
niques including the selective 6LoWPAN fragment recovery
protocol [15]. A possible direction of further evaluation could
also include end-to-end fragmentation such as performed by
IP [2].

A NOTE ON REPRODUCIBILITY

We explicitly support reproducible research [22], [23]. Our
experiments have been conducted in an open testbed. The
source code of our implementations (including scripts to setup
the experiments, RIOT measurement apps etc. ) will be avail-
able on Github at https://github.com/5G-I3/IEEE-LCN-2019.
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APPENDIX
COMPILE TIME PARAMETERS IN RIOT

Table III
CHANGED COMPILE TIME PARAMETERS IN RIOT.

Compile-time Configuration Parameter Value

GNRC_NETIF_PKTQ_POOL_SIZE 64

GNRC_SIXLOWPAN_FRAG_RBUF_SIZE 1 (src.) / 16 (sink)
GNRC_SIXLOWPAN_FRAG_RBUF_TIMEOUT_US 10000000

GNRC_SIXLOWPAN_FRAG_RBUF_AGGRESSIVE_OVERRIDE 0

GNRC_SIXLOWPAN_MSG_FRAG_SIZE 64


